Chapter 8 - Miscellaneous

In This Chapter

« Introduction

« Menus

« Aliases

« Foreach-Object (%)

« PowerShell Interface Customization
« Command Logging

Introduction

In this book, we’ve covered numerous topics from how to start out scripting, to customizing
Exchange Online topics in PowerShell. The topics picked are, as with the rest of the book, based
on practical experience and are ones that should prove useful in a production environment.

For this chapter, we’ll cover menus, aliases, Foreach-Object filtering, and special permission cmdlets.
Each of these provide some added benefit to managing Exchange Online with PowerShell. Aliases
provide a way to customize PowerShell for easier coding. These shortcuts simply make coding easier.
In addition to this, the shell can also be customized in terms of path, colors and window sizing.

An additional filtering option will also be covered in this chapter. This cmdlet helps sort through
or manipulate results of cmdlets and can be used to provide an ‘in-flight’ cleanup for results for
readability. Foreach-Object is indeed a useful cmdlet for your PowerShell scripts or one-liners.

2] > [BY)

© 0O N O O b wWw N =

_R R
wWw N =

Chapter 8 - Miscellaneous 277

Menus

Building menus is not a task that is necessary for one off scripts. Menus should be used on scripts that
will be run on multiple occasions, for example supporting a large number of mailboxes in Office 365
or for occasions where occasional input may be necessary. Another reason to use it is for a reusable
script, which is especially useful for consultants who run their scripts in dozens of environments a
year. The menu simply makes running the script quicker and more flexible.

In a PowerShell script, the menu can consist of two parts. The first part is the text for the menu
which is the visual part of the script. The menu can be simple and singular in color or very colorful
like the example given in Chapter 2. The second part is the infrastructure or back-end of the menu
itself. This is where the executable code is stored and where coding needs to be performed in the
form of functions that will complete the tasks the menu has called.

Example - Menu 1

$Menu =

Write-Hoit T skesk sk ok ok ok ok sk sk ok ok sk ok sk ok ok sk sk sk ok ok sk sk sk ok sk sk sk sk sk ok sk sk ok sk sk stk ok sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk ok sk sk sk sk ok 1
Write-Host "Office 365 Mailbox Management”

Write-Host "*okokskskokokokskokokoksk xkokok sk sk ok ok ok 5k ok ok ok 5k >k ok ok ok >k ok ok >k >k >k ok ok ok >k ok ok >k >k ok ok ok ok >k ok ok >k >k ok ok ok sk okook sk sk kokokskok
Write-Host "1) UPN Check "

Write-Host "2) Configure Retention Policy"

Write-Host "3) Configure Client Access"

Write-Host "4) Set Legal Hold"

Write-Host ""

Write-Host "99) Exit"

Write-Host ""

Write-Host "Select an option.. [1-99]7?"
}

The above menu has been snipped from a script that is used to manage mailboxes and their settings
in Office 365. By itself this menu is just a variable that holds a bunch of text that looks like a menu.
Next, we need to build the backbone on the infrastructure part of the menu. This is where PowerShell
will make calls to functions in the rest of the script to perform the functions you code for.

To start this section of code, construct a ‘Do While’ code block. The reason for this is that script will
keep running options and displaying the menu until an exit code is chosen. So the ‘Do While’ block
would look something like this:

B N -

© 0 N O O b w N =~

_R
N »~ O

Chapter 8 - Miscellaneous 278

Do {

Invoke-Command -ScriptBlock $Menu
$Choice = Read-Host

} While ($Choice -ne 99)

Notice that with this code, the loop will keep displaying the menu after each option is chosen until
the value of 99 is selected. At that point the script will stop and exit to a PowerShell prompt. The
Read-Host will store the value type in $opt to be used for selecting which code block to run. Next,
there needs to be a way to decide which option will run. What PowerShell cmdlet will allow for
this?

Switch ($Choice)

However, a review of the help on ‘Switch’ does not reveal a lot of clues for its usefulness/function-
ality. However, with a little bit of help from your favorite search engine, one can find this MSDN
link for PowerShell functionality:

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_switch?
view=powershell-5.1

We find that Switch will act like a condition tester, if a condition is fed to it, it will select that option
within the Switch code section. For example:

$Choice = 3
Switch ($Choice) {
1 {

Write-Host “Thanks for choosing option one.”

Write-Host “Thanks for choosing option two.”

Write-Host “Thanks for choosing option three.”

The result of this will display the results from choosing option three:

Thanks for choosing option three.

Let’s incorporate this into our menu infrastructure. Using the above as an example, we’ll need to
build code blocks for each function we’ll need to call from our example on the previous page. To
make this process simpler (in terms of the scope of the menu) functions are pre-created:

~ O O b W N =

(0]

10
11
12
13
14
15

Chapter 8 - Miscellaneous 279

« Correct mailbox UPN: Modifies a user’s UPN for Exchange Online

« Configure Retention Policy: Applies a retention policy to a mailbox

+ Configure Client Access: Configures mailbox access to client protocols like ActiveSync
« Set Legal Hold: Configures a hold on a mailbox in Exchange Online

With these functions created they can be referred to in each option code block. Note that it is assumed
that a connection to the MSOL Service has already been made prior to running any of the options.

Option 1
This option calls the Mailbox UPN check function:

Function UPN Check {

$BaseDomain = '@0OnlineExchangeBook.onmicrosoft.com'

$Users = Get-MSOLUsers -All

Foreach ($User in $Users) {

$DisplayName = $User.DisplayName

$UPN = (Get-MSOLUser $User).UserPrincipalName

If ($UPN -like $BaseDomain) {

Write-Host 'The UPN for $DisplayName has the correct domain base' -ForegroundColor C\
yan

} Else {

Write-Host 'The UPN for $DisplayName has an incorrect domain base' -ForegroundColor \

Yellow
1
}
}
The UPH for John Doe has the correct domain bhase.
The UPM for Pete Blanket hasz the coprect domain base.
The UPH for Damian Scoles has the correct domain base.
Option 2

This option calls the Retention Policy Configuration function:

O© 00 N O O b W N -

B R R N
a b W N =~ O

Chapter 8 - Miscellaneous 280

Function RetentionPolicy {

$Mailbox = Get-Mailbox

$Policy = '18 Month Email Delete and Purge'
Foreach ($Line in $Mailbox) {

$Name = $Line.DisplayName

$Retention = $Line.RetentionPolicy

If ($Retention -eq $Policy) {

Write-Host "The mailbox for $Name " -ForegroundColor White -NoNewLine
Write-Host "has the right Retention Policy." -ForegroundColor Green

} Else {

Write-Host "The mailbox for $Name " -ForegroundColor White -NoNewLine
Write-Host "has the wrong retention policy!" -ForegroundColor Red
Set-Mailbox $Mailbox -RetentionPolicy $Policy

}

} # End Retention Policy Function

userdl
userd2
userdld
useridd
userds
userdb

userd?
userds
userd?
userld
Userdl
Userd2

Option 3

This option calls the Configure Client Access function. The reason I want this function is to
‘normalize’ all access to mailboxes in Exchange Online. Let’s say for example the tenant has multiple
Global Admins and maybe some mistakes have been made or experimenting with settings. This
could potentially lead to problems for end user access. For example, the users below are different,
but they should match:

PS C:vy Get—Mailbox | Get—CASMailbox | where {%5_.name —notlike ‘disco='?
Mame ActivelSyncEnabhled OWAEnabhled PopEnabhled ImapEnabled MapiEnabled

damian Falze
John . dee True True True True True

This function needs to make sure all services are enabled for the user and not disabled like we
see above. We will need to get a list of all mailboxes and then use the Set-CASMailbox cmdlet to
change the ActiveSync, OWA, POP, IMAP and MAPI settings to be ‘Enabled’ or set to True ($True
in PowerShell). We can add a little feedback if we want to let the admin know what has changed or
who was misconfigured if we want to.

© 00 N O O b W N =

NN N NN NN DN A A S S R ol ol ol
o N O O b W N~ O O 0O N 0o O b w N~ 0o

Chapter 8 - Miscellaneous

Function CASChanges {

$Mailboxes = Get-CASMailbox | where {$_.Name -NotlLike 'disco*'}
Foreach ($Mailbox in $Mailboxes) {

$Access = Get-CASMailbox | where {$_.Name -NotlLike 'Discovery*'}
Foreach ($Line in $Access) {

$Name = $Line.Name

If ($Line.ActiveSyncEnabled -ne $True) {

Write-Host "ActiveSync is misconfigured for $Name!" -ForegroundColor Yellow
Set-CASMailbox $Name -ActiveSyncEnabled $True

}

If ($Line.OWAEnabled -ne $True) {

Write-Host "OWA is misconfigured for $Name!" -ForegroundColor Yellow
Set-CASMailbox $Name -OWAEnabled $True

}

I1f ($Line.POPEnabled -ne $True) {

Write-Host "POP is misconfigured for $Name!" -ForegroundColor Yellow
Set-CASMailbox $Name -POPEnabled $True

}

If ($Line.IMAPEnable -ne $True) {

Write-Host "IMAP is misconfigured for $Name!" -ForegroundColor Yellow
Set-CASMailbox $Name -IMAPEnabled $True

}

If ($Line.MAPIEnabled -ne $True) {

Write-Host "MAPI is misconfigured for $Name!" -ForegroundColor Yellow
Set-CASMailbox $Name -MAPIEnabled $True

}

}

} # End of CAS Changes function

Sample run of this function:

P G:xn: SOAS—Fix.vpsl
ActiveSync is misconfigured for damian?

POP iz misconfigured for damian?
IMAP is misconfigured for damiant?

Option 4
The option calls the Legal Hold function:

281

© 00 N O O b W N =

RN
N =~ O

© 0 N O O b wWw N =

B R R N
O b W N =

Chapter 8 - Miscellaneous 282

Function LegalHold {

Write-Host 'Enter the email address for the user to be put on Legal Hold. ' -NoNewLi\
ne

$Email = Read-Host

Write-Host 'How many days for Legal Hold? [0 for no end]
$Days = Read-Host

Set $Days variable to 'Unlimited if a '@' was entered.
If ($Days -eq '0") {

$Days = 'Unlimited’

}

Set-Mailbox $Email -LitigationHoldEnabled $True -LitigationHoldDuration $Days
} # End of Legal Hold function

-NoNewLine

Enter the email address for the user to be put on Legal Hold. damian®0nlineExchangeBook.onmicrosoft.com

How many days for Legal Hold? [B for no endl
WARNING: The hold setting may take up to 68 minutes to take effect.

Notice that a comment is included in each option block for documentation purposes. For the last
option the script provides a way to exit the script cleanly:

Option for Exiting Script

99 {# Exit
Write-Host "Exiting..."
}

When option 99 is selected, the script exits because of the Do {} While () code block.

Pulling all of the previous code together into one script:

$Menu =

Write—Hoit stk ok ek skok ok ok sk ok o sk ok ok ok stk ok ok sk ok o sk ok ok sk ok sk ok ok ok sk ok ok sk sk ok o stk sk sk sk ok sk ok ok ok Kok ok o 1
Write-Host "Office 365 Mailbox Management”

WL It -HOST koo skokokok sk sk skokok sk skok ok ok skok ok sk ok ok o o stk o ok sk ok o o sk ok ok ok sk sk ok ok ok sk ok ok ok sk ok ok ok ok sk ok ok ok o 1
Write-Host "1) UPN Check "

Write-Host "2) Configure Retention Policy"

Write-Host "3) Configure Client Access"

Write-Host "4) Set Legal Hold"

Write-Host "99) Exit"

Write-Host ""

Write-Host "Select an option.. [1-99] " -NoNewLine

}

Do {

Invoke-Command $Menu

$Choice = Read-Host $Menu

Chapter 8 - Miscellaneous

Switch ($Choice) {

1 { # UPN Check

UPNCheck

}

2 { # Configure Retention Policy
RetentionPolicy

}

3 { # Configure Client Access
CASChanges

}

4 { # Set Legal Hold

LegalHold

}

99 {# Exit

Write-Host "Exiting..."

}

Default {

Write-Host "You haven't selected any of the available options.
}

}
} While ($Choice -ne 99)

Running the script provides a menu as displayed below:

o3 - oo -Jof~Jof-Jof - Juf~Jef-Jof -Jof~Jef 3o -Juf~Jef -Jof Jof e -Jof Jof e o Jof o o Jof o - of-Jof - fof-Jof b Iof-Tof -Ju-

Office 365 Mailbox Management

om0 o Jof o -Juf—Jof-Jof -Juf~Jef-Jof Juf~Tef-Jof Jof~Jef -Jof Jof—Tof o Jof—Tof 0 Jof o o ofTof Jofof-Jof Jfof-Jof -JofIef-Tof-Ju-

i> UPN Check
2} Configure Retention Policy

3> Configure Client Access
4> Set Legal Hold

293

Option 99 allows for the script to exit:

Select an option.. [1-99]1 99
Exiting...

283

If an option is typed in wrong, say 77, an error message is provided (and the script does not exit):

Select an option.. [1-991 77

You haven't szelected any of the availahbhle options.

Chapter 8 - Miscellaneous 284

Aliases

PowerShell aliases are shortened versions of PowerShell cmdlets. Consider aliases to be a conve-
nience in reducing the amount of text in a script. Aliases are not necessary for writing a script but
they do provide shortcuts to coding. Without aliases, each command in PowerShell just takes longer
to type. The downside of aliases is that normally PowerShell is a very readable scripting language
and using aliases can obscure the ability to read PowerShell in plain English. Another downside is
that there is no guarantee that the alias will exist in a different environment. If the script is meant
to be portable, it would be advisable to not use them or at least limit their usage. If a script will be
read by someone other than you, using aliases might make the script unreadable to others.

Get-Alias -Definition Foreach-Object

Mame

—» ForEach—-0Object
foreach —* ForEach—0Object

However, what if you don’t know the command that the alias is for? The above can be reverse
engineered to show all aliases. To look up all aliases, simply type in ‘Get-Alias’:

Odhject
dd—-Content

p —» Add-PESnapin

—» Get—-Content

> Set—-Location
chdir —» Set—-Location
cle —» Clear—Content
clear —-» Clear—Host
clhy =» Clear—Hizstopy
cli —» Clear-Iten
clp =» Clear—ItemProperty
cls —» Clear—Host
clv =>» Clear—Uariahle
cnsn —» Connect-PSSession
comnpare = Compare—=0bject
caopy —» Copy-Item

Without listing them all here, all told, there are 148 aliases defined. What may be more interesting is

that aliases can be created and modified. This certainly provides for some flexibility or customization
of PowerShell.

New-Alias
If there is a desire to make custom aliases for PowerShell, New-Alias is the cmdlet to use.

Note: The aliases are only good for the current session. If you close the current session, the alias is
lost and when you reconnect to Exchange Online PowerShell the alias will not be there.

1

N =

w

W

o1

© 0 N O

10

Chapter 8 - Miscellaneous 285

Get-Help New-Alias -Examples

PS8 C:n>new—alias list get—childitem

This command creates an alias named “list" to represent the Get—ChildItem cmdlet.

EXAAMPLE 2

PS G:~>new—alias —name w —value get—wmiohject —description “guick wmi alias" —option ReadOnly
PS5 G:in>get—alias —name w | format—list =

This command creates an alias named "w'" to represent the Get—WMIObject cmdlet. It creates a description,. “guick wmi
pipes it to Format-List to display all of the information about it.

Sample Usage
We can create an alias for just about anything in PowerShell that we want. For this example, we can
create aliases for any of the *-Mailbox cmdlets if we wanted to.

To create these aliases, we’ll use a series of New-Alias one-liners:

New-Alias dmbx Disable-Mailbox -Description 'Disable Mailbox cmdlet’
New-Alias embx Enable-Mailbox -Description 'Enable Mailbox cmdlet'
New-Alias gmbx Get-Mailbox -Description 'Get Mailbox cmdlet'

New-Alias nmbx New-Mailbox -Description 'New Mailbox cmdlet'

New-Alias rmbx Remove-Mailbox -Description 'Remove Mailbox cmdlet'
New-Alias smbx Set-Mailbox -Description 'Set Mailbox cmdlet'

New-Alias gcc Get-ComplianceCase -Description 'Get Compliance Case'
New-Alias ncc New-ComplianceCase -Description 'New Compliance Case'
New-Alias scc Set-ComplianceCase -Description 'Set Compliance Case'
New-Alias rcc Remove-ComplianceCase -Description 'Remove Compliance Case'

Example result of a new alias creation:

P8 C:stempr Mew-Alias dmbx Disable—Mailbox —Description ‘Disable Mailbox cmdlet?
P8 C:xtempr Get—Aliaz dmhbx

CommandT ype Name Uerzion Source

dmbhx —> Dizable—-Mailbox

There are a few parameters that can be used to customize this new alias during creation. One of
the parameters is ‘Option” which provides for a way to limit when the alias can be used — Global,
Local, Script or Private. An alias could be enabled for only when a script runs or only while in a
local session. The purpose of this option is to possibly isolate the usage of a cmdlet as to prevent
unwarranted changes using the aliases. A description should be added so that the purpose of the
alias is known by others.

Set-Alias

This cmdlet is used to modify any of the existing aliases to the specifics that you may want to
configure for a particular alias. One of the exceptions is if the alias is set to ReadOnly. To modify
one of those aliases, a “-Force’ switch must be used. Here are some sample uses of the cmdlet:

1

W N -

© 0w N O O

10

Chapter 8 - Miscellaneous 286

Get-Help New-Alias -Examples

EXAMPLE 1

PS8 C:s>set—alias —name list alue get—childitem

This command creates the alias "list" for the Get—ChildItem cmdlet. After you create the alias,. you can use "list"
in place of "Get—-ChildItem" at the command line and in scripts.

EXAMPLE 2

PS C:v>set-alias list get—location

This command associates the alias "list" with the Get-Location cmdlet. If "list™ iz an alias for another cmdlet.
thiz command changes its association so that it now is the alias only for Get—-Location.

Sample Usage

In practical terms, this cmdlet would likely only be used to modify existing aliases that you’ve
created yourself. Taking some of the aliases created in the previous section, let’s make sure that the
aliases are ReadOnly:

Set-Alias dmbx Disable-Mailbox -Option ReadOnly
Set-Alias embx Enable-Mailbox -Option ReadOnly
Set-Alias gmbx Get-Mailbox -Option ReadOnly
Set-Alias nmbx New-Mailbox -Option ReadOnly
Set-Alias rmbx Remove-Mailbox -Option ReadOnly
Set-Alias smbx Set-Mailbox -Option ReadOnly
Set-Alias gcc Get-ComplianceCase -Option ReadOnly
Set-Alias ncc New-ComplianceCase -Option ReadOnly
Set-Alias rcc Remove-ComplianceCase -Option ReadOnly
Set-Alias scc Set-ComplianceCase -Option ReadOnly

What’s interesting is that this same cmdlet (‘Set-Alias’) can be used to create a new alias as well. For
example, if a new alias were needed for creating a new mailbox on-premises. The Set-Alias could
be used to create this alias as well:

PS8 C:» Set—Alias gmt Get—MessageTrace —Description 'Get Message Trace cmdlet’

PS C:2

Removing an Alias

Reviewing the PowerShell cmdlets with the word ‘Alias’ there are no cmdlet with the word ‘remove’
in it. How then can an alias be removed? If the solution cannot be found in PowerShell, then
searching for a solution via your favorite search engine is the next step:

Search string: remove powershell alias

Chapter 8 - Miscellaneous 287

remove powershell alias Q
Q Al [] Videos [&) Images [E News (& Shopping ! More Settings Tools
About 476 000 results (0.43 secaonds

Description. The Remove-Alias cmdlet removes an alias from the current !
PowerShell session. To remove an alias with the Option property set to ReadOnly,

use the Force parameter. The Remove-Alias cmdlet was introduced in PowerShell

6.0

Remove-Alias - Microsoft Docs !
https://docs microsoft.com » en-us > module » microsoft. powershell utility 5

Reviewing the first link from the search, the solution to removing the alias is:
Remove-Item Alias:<alias to remove>

To remove one of the previous aliases that were created use this cmdlet:
Remove-Item Alias:dmbx

However, there is an error:

C:N\> Remove—Item Alias:dmbx

That means the ‘ReadOnly’ setting that was applied worked as expected. To remove the ReadOnly
option, run this:

Set-Alias nrm New-RemoteMailbox —-Force -Option None
Remove-Item Alias:nrm

PS C:> Bet—Alias dmbx Disable—Mailbox —force —option none

PSS C:» Remove—Item Alias:-dmhbx
P8 C:>

Now if the alias is tried once more, PowerShell fails as the references have been removed:

1

Chapter 8 - Miscellaneous 288

PE C:> dmbx

In the end, creating your own aliases is not required, nor are they necessary, but creating custom
aliases may be a more efficient way to write code in PowerShell.

Foreach-Object (%)

While on the topic of PowerShell aliases, there are indeed some useful aliases that point to some
rather useful cmdlets that we have not covered. One useful alias is ‘%’. What does the ‘%’ symbol
stand for or abbreviate in PowerShell? We can still use the Get-Alias cmdlet, but we need some
criteria for finding just the ‘%’ character in the results. If you recall from the Filtering section earlier
in the book, the ‘where’ filter can help find the ‘%’ symbol. From the screenshot, we also know that
the field called ‘Name’ will contain the value:

Get-Alias | Where {$_.Name -eq "%"}

CommandT ype Mame

—% ForEach—Ohject

By using that cmdlet we now know that the alias % refers to Foreach-Object. Some other examples
of other aliases:

Get-Alias | Where {$_.Name -eq "ft"}

Get-Alias | Where {$_.Name -eq "fl1"}

CommandT ype Mame

fl —» Format—List

a b W N -

Chapter 8 - Miscellaneous 289

Circling back to the ‘%’ symbol or Foreach-Object. This particular alias provides for some interesting
processing of data. Take for example a scenario where we need to get the SIP address for a user’s
account in Exchange Online. The address exists in the EmailAddresses property for a mailbox. It
is one of a number of addresses that exist there. We can write a one-liner that can pull the entire
EmailAddresses property and pull out just the SIP address. In the end, a report that shows this criteria
needs to be created and the PowerShell one-liner looks like this:

Get-Mailbox | Select-Object DisplayName, @{Expression ={$_.EmailAddresses}/;lLabel="SI\
PAddress'} | % {$Mail = $_.SIPAddress ; $Email =$Null; Foreach ($Line in $Mail) {$Ad\
dress = $Line -split ':'; $Prefix = $Address|[0]; if ($Prefix -cmatch 'SIP') {$Email \
= $Address[1]}};if ($Email -eq $Null) {$Email = 'No SIP Address'};$_.SIPAddress = $E\
mail;Return $_} | FT -Auto

OK. Maybe that was a bit too much at once. Think of the above as what IT Management is looking
for. To learn how the Foreach-Object or ‘%’ alias fit into this, start with the results of just the ‘Get-
Mailbox’ that we need for the replication information.

Get-Mailbox

=
=

= =

]
=
=
=
=

Notice that we get Name, Alias, ServerName and ProhibitSendQuota. This isn’t what we need for
our report. Yes, we can use Name and if we want an alias, but we really need to get SIP addresses.
So let’s user the Get-Mailbox cmdlet to reveal these mailbox properties in table format:

Get-Mailbox | where {$_.name -notlike 'Disc*'} | ft Name,Alias,EmailAddresses

Name Alias EmailfAddresses

damian damian {SP0O:SPO_, 74a37-6588-4a%1-h3e7-dcBh?5f 8abhsESP0_29368d28-Adc?-46c2-8Af 4-BcchBae2ch5f,. SIP:
John.doe john.doe {8IF:john.doe@0nlineExchangeBook.onmicrozoft.com,. EMIP:john.doe®OnlineExchangeBook.onmicroso

We’ve also filtered out the Discovery Mailbox as this is not a user mailbox.

The table looks alright, however the EmailAddresses field is a mess. We also see the SIP address
in the field, but we also see every other email address as well. We need to parse that field for that
address. For readability sake we will also rename the field to ‘STPAddress’.

From the field data, we can determine that there are several address types stored in the EmailAd-
dresses field - SMTP, smtp, SIP and SPO. SPO is for SharePoint Online, SMTP and smtp are our
email addresses and SIP is used for Skype Online.

1
2

Chapter 8 - Miscellaneous 290

Let’s start with the renaming of the column for the EmailAddresses property. This can be done
instead of using ‘Format-Table’ we can use ‘Select-Object’ in conjunction with ‘Expression’ and
‘Label’ formatting method, like so:

Get-Mailbox | Where {$_.Name -NotlLike 'Disc*'} | Select-Object DisplayName, @{Expres\
sion ={$_.EmailAddresses};lLabel="'SIP Address'

This will then change the column heading to show as ‘SIP Address’ instead of ‘Email Addresses:

DizplavMame SIF Address

Damian Scoles {SP0O:S5P0_ded?4a3?-6580—4a%1-b3e?-dcBh?5f8abh5RESP0_29368d428-Bd
John Doe {8IP:john.doePOnlineExchangeBook.onmicrosoft.com, SMITP:john.ds

Now that this is in place, we can now work with the data in the field and pull out just the SIP Address.
How do we go about doing this? Well, we already have the data with we will use the “Select-Object’
cmdlet. We can now manipulate this data with a Foreach-Object, or it’s alias of ‘%’. With this we
can manipulate the data using what amounts to a PowerShell code block. In this code block we need
to pull out the SIP value from the series of values in the EmailAddresses field. One of the best ways
is a Foreach loop to examine each one. We only store the one value that has the key letters ‘SIP’ in
front of it. We can also register a ‘No SIP value’ phrase if we do not match these letters. First is the
‘Foreach-Object’ to kick it off:

| %

We store all of the Email Addresses in a new variable called $Mail. Notice the EmailAddresses value
can be turned in a variable by putting ‘$_." in front of it. We can do this with any property if we
wish to do so:

{$Mail = $_.EmailAddresses

Next we configure the $SIP variable as $Null. This variable will be used to store a SIP value if found
or be left empty and used to trigger the phrase about no SIP address ($Null):

$SIP =$Null

The next code section is a Foreach loop that will process each entry stored in $Email in a loop:
Foreach ($Line in $Mail) {

Each entry in the field has a Prefix (SIP, SMTP, etc) that precedes the data we need. We can split up

the values in the $Line variable using a parameter called *-Split’. With this parameter we can then
decide which character to separate out with. See these sample values we need to split:

Chapter 8 - Miscellaneous 291

Prefix
Separator Value
o

We can store this separated value with the $Address like so:
$Address = $Line -split ':'

Now the $Address variable stores each part of the original field as a separate column and is numbered
starting with the number ‘0’:

$Prefix = $Address|[Q]

Once we store the Prefix value in the $Prefix variable we can check it to see if it contains our three
special characters of ‘SIP” and we also make sure that these letters are capitalized as well:

If ($Prefix -cmatch 'SIP') {

If there is a match, we can then process it by storing the address value ($Address - field 1) in a
variable called SIP, like so:

$SIP= $Address[1]}}

Once this is done and all the addresses are processed, we can then check to see if the $SIP variable
is empty. If it is empty, then the $SIP value is populated with ‘No SIP Address’ to indicate that no
SIP address was found.

If ($SIP -eq $Null) {$SIP = 'No SIP Address'}

At the very end of the line, we need to then return this information back to be displayed, This requires
we first use the original variable from the beginning ($EmailAddresses) as well as a ‘Return’ cmdlet:

$_.EmailAddresses = $SIP
Return $_}

Once all of these pieces are in place we now have a one-liner that will give us a mailbox’s
DisplayName and SIP address in a nicely formatted and labeled table:

N =

a1 b W

W N =

o1

Chapter 8 - Miscellaneous 292

Get-Mailbox | Select-Object DisplayName, @{Expression ={$_.EmailAddresses};Label="SI\
P Address'} | % {$Mail = $_.EmailAddresses ; $SIP =$Null; Foreach ($Line in $Mail) {\
$Address = $Line -split ':'; $Prefix = $Address[0]; If ($Prefix -cmatch 'SIP') {$SIP\
= $Address[1]}};1f ($SIP -eq $Null) {$SIP = 'No SIP Address'};$_.EmailAddresses = $\
SIP ; Return $_} | FT -Auto

However, when we run this code, we get LOTS of red. What went wrong?

Well, the error message doesn’t make sense, does it? The error states that the property ‘EmailAddress’
cannot be found on the object. It appears that the error message is related to the Mailbox object and
its EmailAddresses object. However, this is not the case. The error relates to the label of the column,
which is ‘SIP Address’ and the variable used in the Foreach-Object which is ‘$EmailAddresses’.
These values are different, which causes the error message to occur. Instead, these values need to
match like so:

PS C:\> Get—Mailbox | Select—Object DisplayMame. B{Expression ={5__EmailfAddresses};Label="SIPAddress’> | x {SMail =
§_-SIPAddress|; $Email =%Mull; Foreach (5Line in $Mail) {%Address = SLine —split ’':’; &Prefix = SAdd [B1; if (SPrefix
s—cmatch *SIP')> {$Email = 5Address[113};if ($5Email —eq 5Hull} {$Email = *No SIP Address’'*;5_.SIPAddress = $Email;Return
_» 1 FI —-Auto

SIPAddress

damianB0nlineExchangeBook.onmicrosoft.com
very Search Mailbox Mo SIP Address
John Doe John.doe@0nlineExchangeBook.onmicrosoft.com

Code Summary

Taking all of the above information and synthesizing it, we get this long one-liner to handle the
heavy lifting for us. What is nice is that we can substitute the ‘SIP’ phrase for ‘SMTP’ or even ‘smtp’
if we want to customize it for a different search.

Get-Mailbox | Select-Object DisplayName, @{Expression ={$_.EmailAddresses};lLabel="SI\
PAddress'} | % {$Mail = $_.SIPAddress ; $Email =$Null; Foreach ($Line in $Mail) {$Ad\
dress = $Line -split ':'; $Prefix = $Address[0]; If ($Prefix -cmatch 'SIP') {$Email \
= $Address[1]}};If ($Email -eq $Null) {$Email = 'No SIP Address'};$_.SIPAddress = $E\
mail;Return $_} | FT -Auto

DisplayMame SIPAddress

Damian Scoles damianEOnlineExchangeBook.onmicrosoft.com
Discovery Search Mailbox Mo SIP Address
John Doe john.doe@0nlineExchangeBook.onmicrosoft.com

Chapter 8 - Miscellaneous 293

PowerShell Interface Customization

Working space is important in PowerShell and this means screen buffering. Why is this important?
The default line buffer limit is 300 which can be too small depending on what script output of cmdlet
output is being run. For example, just running ‘Get-Help New-ReceiveConnector’ can overrun that
buffer. This makes it hard to use PowerShell to its fullest. So, just changing the buffer size will make
PowerShell that much easier to work with.

Note: These changes are local to the machine where the changes are made.

Before - 300 Character Buffer

& Machine: 16-TAP-EX02.16-TAP Local | = | o

To make the change, click on the icon in the upper left and select Properties (see below):

E] £ "Exchange Management Shell” Properties “
hestore Options i Fort | Layout | Colors |
Move ;
Size Cursor Size
- | Minimize " Small
e) Medium
o | Maximize O tage
x Close Command Histary Edit Options
Edit s Buffer Size: 50 R [] QuickEdit Made
L &_ Mumber of Buffers: 4 5 [] Insert Mode
Properties
| _— J [] Discard Old Duplicates

Adjust the 300 to 9999:

Chapter 8 - Miscellaneous 294

2 "Exchange Management Shell” Properties [x| [“Exchange Management Shell” Properties -
:".C)'ﬁiit;ns Forrt Layout :_"('Z.olors Opii-bns Forrt Layout :_ED-IDrs

. Window Preview . Window Preview
Screen Buffer Size Screen Buffer Size

Width: 120 I Width: 120 5
Height: Height: E
Window Size - Window Size
Wih: 120 & With: 2o [£
Height: ‘E 5 Height: |T 5
Window Position Window Position
Left: 52 5 Left: 52
Top: 52 ; Top: h2
Let system position window [w] Let system position window
After - 9999 Character Buffer
= Machine: 16-TAP-EX02.16-TAP.Local =~ -

Notice the smaller size of the slider on the right. Now output from most, if not all cmdlets, will not
exceed the window buffer size. If the output is in excess of 9999 lines, it may be better to export the
results to a TXT, CSV or some other sort of file. Make sure to save these settings so we won’t have
to keep making this change.

In addition to the above, startup options can be created for the PowerShell window to customize
it more. There are several locations for customization files for PowerShell and they vary in their
functionality. The two we will work with for this chapter are:

For all users - PowerShell
swindir’%\system32\Windows—-PowerShell\v1.0\Microsoft.Powershell_profile.ps1
Current user - PowerShell
ZUserProfile%\Documents \WindowsPowerShell \Microsoft.Powershell profile.ps1

Before creating a new one, verify that one has not yet been created. Backup the old profile if needed
for later. First verify the current PowerShell profile:

Chapter 8 - Miscellaneous 295

1 $Profile

\Administrator\Documents\PowerShell\Microsoft.PowerShell profile.psi

To see if the file was already created and in use (if $True, then the file exists, otherwise it does not):

1 Test-Path $Profile

\» Test-Path %Pr

In the above case, the profile has not been created and if we wish to add customizations we’ll need
to create our own file.

1 New-Item -Path $Profile -ItemType File -Force

Directory:

Mode

-g---- 1/9/282¢ 8 Microsoft.PowerShell profile.psil

Once the file has been created you can open this in your favorite editor.
What Can Be Added to This File

The following is a list of some of the customizations that can be performed with the profile file:

« Window sizing (height and width)
+ Load custom scripts
« Windows colors

Window Sizing and Coloring”
The size of the console is stored in this variable $Host which is a known variable in PowerShell.

1 $Host

Chapter 8 - Miscellaneous 296

Instanceld
uI
CurrentCulture

CurrentUICulture

PrivateData

DebuggerEnabled

IsRunspacePushed

Runspace i System.Management.Automation.Runspaces.localRunspace

Notice the UI parameter is for the User Interface. To find out what is stored in it, run this:

$Host . UI

RawlI

ystem.Management . Automation.Internal .Host.InternalHostRawliserInterface

That was rather unhelpful, how do we see the values stored for the UI so that changes can be made?

$Host .UI.RawUI

ForegroundColor i DarkYellow
BackgroundColor : Black
CursorPosition : ;

ition

s

B

*
& r

n=

2
2
P
&£

S S I

n

: Administrator: Windows PowersShell

We now see the buffer size and Window Size as well as colors for the window. For this sample, the
window will have a background of gray and a foreground of black. The buffer will be widened to
160 and shortened to 6000. Next the Window Size will increase to 160 and then height to 85.

© 00 N O O b W N =

NN
= o

Chapter 8 - Miscellaneous 297

$Shell = $Host.UI.RawUI
$Shell.ForegroundColor = "Black"
$Shell.BackgroundColor = "Gray"
$Buffer = $Shell.BufferSize
$Buffer.Width = 160
$Buffer.Height = 6000
$Shell.BufferSize = $Buffer
$Window=$Shell .WindowSize
$Window.Width = 160
$Window.Height =
$Shell.WindowSize = $Window

The custom colors change the PowerShell window like this:

CxWindows»zystemd2>ed
Czn
Eans

In the end, when the new customized PowerShell window is opened, there may be an error message
displayed. The reason is that in order to load a script with the PowerShell window, the permissions
for Script Execution need to be something above Restricted, which is the default permission. For
example, the ‘RemoteSigned’ permission will allow the script to be loaded.

Set-ExecutionPolicy RemoteSigned

That will ensure the customizations will work. Loading scripts when opening a PowerShell window
requires a couple of items. First changing the location of the PowerShell window to a directory
where the scripts are stored:

Set-Location C:\Psscripts

As a final step of configuring the profile script, we could run another script (below) stored the above
folder:

.\CheckMailboxConfig.PS1

The example script above, would return various settings for our mailboxes - retention policies,
quotas, OWA Mailbox Policy Mobile Device policies and more. Combining all of these steps together
would results in this profile script:

© 00 N O O b W N =

B R R N
O b W N =

Chapter 8 - Miscellaneous 298

Load all shell parameters
$Shell = $host.UI.RawUI
$Shell.ForegroundColor = "Black"
$Shell.BackgroundColor = "Gray"
$Buffer = $Shell.BufferSize
$Buffer.Width = 160
$Buffer.Height = 6000

$Shell .BufferSize = $buffer
$Window=$Shell.WindowSize
$Window.Width = 160
$Window.Height = 50

$Shell .WindowSize = $Window

Run Exchange Services check script
Set-Location C:\Psscripts
.\ExchangeServices.PS1

There are plenty of other options and additions that can be made to your PowerShell profile, but
they will not all be listed here.

Command Logging

PowerShell is very important to Exchange Online and even the Exchange Administration Console
leverages PowerShell. The question is, can this be made visible? The answer is yes, it can. What
benefits does this give to those who want to use PowerShell to maintain their Exchange Online
environment? For starters, when the PowerShell commands are revealed, insight may be gained into
how to use the various switches and parameters when configuring an item in PowerShell. That’s
great, but how do we turn it on? By logging into the Exchange Administration console, click on the
Administrator drop down button and select the ‘Show Command Logging’ option.

l Administrator v 2 =

Help
Disable Help bubhble
Show Command Logging
Privacy

" iy &
Copyright

=

Once this is done, another window will pop-up so have your pop-up blocker turned off. The window
looks something like this:

Chapter 8 - Miscellaneous 299

2 Show Command Logging - Internet Explorer a0 -

Logging Viewer
X P

Index Start Time Status Command

There are no items to show in thiz view

0 selected of O total

Learn more

#100% -

Notice that all boxes in the window are completely empty. To get commands to show here, we now
need to manage our Exchange Server. Let’s take for an example that I want to perform a Message
Trace for all messages coming into the environment. First click on ‘Mail Flow’ and then click on
‘Message Trace’:

Admin

Exchange admin center

MESSIOE 1race

Now we can enter some parameters for a Message Trace - Date Range, Delivery Status and Recipient:

Chapter 8 - Miscellaneous

"Diate range:

Past 7 Days r
I LT
WTL) Coordinated Universal Time !

“Start date and time:

Thi 3/8/2018 v | | 4:00 PM v |
"End date and time:
Thu 3782018 = | [400 PM v

[prol ¥ .
EIVETY status;

Failed v

Spedfy meszages from or to & person or group. Use full
email addresses or wibdcards m the format
*Econtoso.com. When specifying a waldcard, other
addresses can't be used,

Sender;

acd sender..

Recipient

Damian Scc X add recipient...

[H’au can narrow the search
for specific reciprents by
dlicking the button,

™

300

Then we can click ‘Search’ to get our results and then we review the Command Logging window to

see what actions were taken in PowerShell:

© 00 N O O b W N =

Chapter 8 - Miscellaneous 301

= Show Command Logging - Google Chrome =R
8 Secure | htips://outlook.office365.com/ecp/cmdletlogging/cmdletiogging.aspx? Activity 750-5851-4248-98ze-61
Logging Viewer
Imdex Start Time Status Command
0 3/8/2018 4:57 PM Completed Get-Recipient -Filter 'RecipientTypeDetails -eq "RoomMailbox, Equipmenth..,
3/8/2018 5:00 PM Completed Get-MessageTrace -PageSize 1000 -RecipientAddress @(Damian@Exchange...

3/872018 5:00 PM Get-MessageTrace -PageSize 1000 -RedpientAddress @('Damian@Exch...

1 selected of 5 tota
(Command:

(Get-MessageTrace -PageSize 1000 -RecipientAddress @('Damian@ExchangeOnlineBook.onmicrosoft.com’,'dave@ExchangeOnlineBook.onmicrosoftcom’) -
Status 'Failed’ -StartDate "3/2/2018 1:00:48 AM' -EndDate '3/9/2018 12:55:48 AM'

Learn more

What can be gleaned from this information and how can an administrator use it to improve
knowledge of PowerShell? First, take a look at the cmdlets that are listed. Notice that there are
two cmdlets listed, Get-Recipient:

0 3/8/2018 4:57 PM Completed Get-Recipient -Filter 'RecipientTypeDetails -eq "RoomMailbox, EquipmentM,..

and Get-MessageTrace:

=

3/8/2018 5:00 PM Completed Get-MessageTrace -PageSize 1000 -RecipientAddress @{'Damian@Exchange..

The two Get-MessageTrace cmdlets have a -PageSize of 1000 which is the default size for a Message
Trace query and as we learned earlier in the book, we can manipulate how many results or records
are queried. The other nice part of this Command Logging window is that we can copy and paste
the cmdlets and the three that ran in our example copy and paste here as (second and third are
duplicates):

Get-Recipient -Filter 'RecipientTypeDetails -eq ''RoomMailbox, EquipmentMailbox, Leg\
acyMailbox, LinkedMailbox, UserMailbox, MailContact, DynamicDistributionGroup, MailF\
orestContact, MailNonUniversalGroup, MailUniversalDistributionGroup, MailUniversalSe\
curityGroup, MailUser, PublicFolder, TeamMailbox, SharedMailbox, RemoteUserMailbox''\
' -Properties 'PrimarySmtpAddress,DisplayName,ArchiveGuid,AuthenticationType,Recipie\
ntType,RecipientTypeDetails,ResourceType,WindowsLivelD, Identity, ExchangeVersion,Orga\

nizationId,City,Company,CountryOrRegion,Department,Office,Title' -ResultSize 500

Get-MessageTrace -PageSize 1000 -RecipientAddress @('Damian@ExchangeOnlineBook.onmic\

10
11

N =

w

Chapter 8 - Miscellaneous 302

rosoft.com', 'dave@ExchangeOnlineBook.onmicrosoft.com') -Status 'Failed' -StartDate '\
3/2/2018 1:00:48 AM' -EndDate '3/9/2018 12:55:48 AM'

Now we can use the above Get-MessageTrace cmdlet and try it in PowerShell to see what we get as
a result. In this case the ‘Failed’ status provides us with zero results and is helpful in determining
that these two users did not have any messages that failed to deliver. If we were to remove that
condition, so that it were to look for all messages, the cmdlet would look like this:

Get-MessageTrace -PageSize 1000 -RecipientAddress @('Damian@ExchangeOnlineBook.onmic\
rosoft.com', 'dave@ExchangeOnlineBook.onmicrosoft.com') -StartDate '3/2/2018 1:00:48 \
AM' -EndDate '3/9/2018 12:55:48 AM'

Which does provide results:

Received Sender Address Recipient Address Subject

3/6-2018 7:11:52 AM damian@practicalpowershell.com daveRexchangeonlinebook.onmicrosoft.com test journaling
3/6,2018 7:84:13 AM damianCpracticalpowershell.com damianBexchangeonlinebhook.onmicrosoft.com Test

