- 10 -
IMAP and POP

POP

POP3 is still commonly used by ISP's (Internet Service Providers) as a means for mail clients to EE

retrieve mail from a mail server. POP3 utilizes port 110 (unencrypted, not secure or opportunistic ~ [— Exahenge
TLS) or port 995 (secure, encrypted) for connecting to a server, so the client could potentially use " _-l' SEREr L
either a secure or an insecure connection when retrieving emails. Generally speaking, Outlook —

users with an Exchange mailbox do not use POP3 nor is it recommended. MAPI, RPC over HTTP or
MAPI over HTTP are the preferred methods to access a mailbox. POP3 is either used by older
clients, clients on Operating Systems other than Windows or by applications that retrieve mail for
a special purpose.

<« %Dj

POP3 was created quite a long time ago and is beginning to show its age in the form of negative. Pull
The perception is that the number of apps or clients that connect using this method is declining. 11n/d5
Here is a short list of limitations: —

Application
1. Download and Delete: POP3 clients initiate a download of messages from the server. Once Server
downloaded the emails are removed from the server that hosts the emails. While some ISP’s and '_D

POP3 providers have put in delays for when messages are removed, the messages will be removed
and the only copy will be the local copy.
2. Limited client connectivity as only one device can download the emails.

For the purposes of scripting, we may not care about these deficiencies. Most Exchange engineers work with POP3 in three
scenarios (1) setting up the initial configuration which means deciding on a login method, security (or no security) and then
testing with the application needing the connection, (2) troubleshooting an existing POP3 setup or (3) checking for POP3
connections to see if that service needs to be moved to the new servers a client is deploying.

The following scenario we will cover the third scenario and build a script to look at the POP3 logs. By examining the POP3
logs of an Exchange server, we can see if the service is being used and even report back what servers or clients are using
POP3 to pull email from the Exchange server.

Discovering POP3 Connections

Scenario - Migrating email from Exchange 2013 to Exchange 2019 (based on real world experiences)
Goal - Discover if apps are using POP3

Why? - Make sure all services are moved to 2019

How to accomplish the goal?

For our scenario we need to discover what applications, servers or computers are attempting to connect to Exchange 2013
so we can replicate these connections in Exchange 2019. First we need to start out with what we know about Exchange
2013's POP3 and IMAP feature. We know there are two services that Exchange uses to allow client connections. First one is
called 'Microsoft Exchange POP3' and the second service is called ‘Microsoft Exchange IMAP4'. We need to first check to
see if these services are running on the server. We can do this with the Services.msc MMC console or we can do it with
PowerShell.

Chapter 10: IMAP and POP 273
Discovering properties on these services is easy with PowerShell:
[P5] C:\>Get-Service
Status Name

MSExchangeImapd

[P5] C:\»Get-Service

S5tatus MName

MSExchangePop3

How do we know what PowerShell cmdlet to use? Using what was discussed previously in the book, we can run:

Get-Command *Service*

I

Note: The use of the * wildcard symbol which confers any amount and type of characters before the word ‘service'.

This will give us a list of PowerShell cmdlets with the word 'service' in it. Here is the list of cmmdlets we can use:

Get-Service New-Service Restart-Service
Resume-Service Set-Service Start-Service
Stop-Service Suspend-Service

We can further improve our cmdlet search by just looking for GET cmdlets as these are informational:
Get-Command Get-*Service*

This gives us GET cmdlets with the word 'service' in it:

Get-ClientAccessService Get-FrontendTransportService
Get-MailboxTransportService Get-SMServerService
Get-TransportService Get-Service

From the above list we want 'Get-Service'. If you don't know the exact name of the service, try to perform similar search as
we did for the Get-Service cmdlet, using the keyword 'POP":

Get-Service *Pop*
On the Exchange 2013 server, one service is returned from the above query:

Mame DisplayName

Stopped MSExchangePop3 Mi Ft Exchange POP3
Stopped MSExchangePOP3BE hange POP3 Backend

These cmdlets establish that POP3 services are running on the server. How do we find configuration settings which will lead
us to connection information? To find the command for POP settings, try:

Get-Command *Pop*

Chapter 10: IMAP and POP 274

Which displays these relevant cmdlets:

Get-PopSettings Set-PopSettings
Test-PopConnectivity Pop-Location

TIP: Different ways to display settings for POP3 are listed below.

Format Table (FT) presents the settings for POP3:

} Securelogin 19-83-EX81

Runspaceld : Tb94edbd-21ed-4a88-a:
Name = |
ProtocolName : POP3
MaxCommandSiz b
MessageRetrievalSortO : Ascending
: {[::]:110, ©.9.8.08:110)
SS5LBinding A £ Bt i ©.8.8.0:995}
Interna ctionSetting : e1. :995:551, 19-B3-EX81.19-83.Local:116:TLS}

: 19-83-EXB1
The command needed to find POP3 settings is:
Get-PopSettings

We need detailed information from each cmdlet. In order to get this, we need to add '| fI' to the end of each cmdlet. For
POPS3 the log location is revealed (in this particular Exchange installation) to be:

LogFilelocation : £ \Mic erveriVis\Logging\Pop3

Make sure that Protocol logging (a verbose log of all connections on a particular protocol) is enabled, this is not a default
setting. To enable logging for POP3 run this PowerShell cmdlet:

Set-PopSettings -ProtocolLogEnabled $True
Don't forget to restart the POP service, otherwise the log directories don't get created:
Restart-Service MSExchangePOP3
If there are log files in the directory, PowerShell can parse these files looking for relevant values. First, we need to get the

location of the files to work with:
Variable to store logfilelocation POP3 log file location

slocation = (G E""E.?TEEEE’JE&} logfilelocation

Query local server settings for POP3

Chapter 10: IMAP and POP 275
Note: The .lodfilelocation is a specific property retrieved by Get-PopSettings/

Once we have the location of the POP3 log files, we can get a full list of the files using the Get-Childltem cmdlet (which
provides child’ items under a specified folder):

Get-ChildItem $Location
The above cmdlet, using the file location stored in $location and provides this result:

Directory: C:\Program Files\Microsoft\Exchange Server\Vi5\lLogging\Pop3

=1~

Mode LastWriteTime Length Mame

-a---- 8/31/2019 7:41 PM

If there is more than one file present, we will need to be able to store the above information and analyze each of the POP3
log files for the CIP (Client IP Address). We will store the results in a variable called $files:

$Files = Get-ChildItem $Location

We now have a list of files to work with. With PowerShell we can use the Foreach loop to examine each file. Code to execute
on each file will be placed in the brackets ‘{}".

Foreach ($File in $Files) { }

Once in the loop, we need to get the name of the file from the current line in the $files array:
$Name = $File.Name

Note: .name' is a property of the $File variable

We now have the file location ($location) and the name of the current POP3 file ($name) and need to store this into the
$Csv variable so we can search each line for the CIP value:

$Csv= Import-Csv (Join-Path $Location $Name)

Note: Join-Path allows us to join the two variables $Location (the path) and $Name (the child path) together with a '\'
delimiter to make a completely new file path.

The $Csv variable will have a lot of lines to review, so we can loop using the Foreach command to review each line in the
current POP3 log file:

Foreach ($Line in $Csv) {

The POP3 log files contain some commented lines, with '#' at the very beginning of the lines. PowerShell can ignore these
lines with some help:

If ($Line -Like "#") { }

The above line looks for a line with '#' in it and skips it due to the empty values. This process will happen as we loop through
each line in the CSV. Below is a sample version of an Exchange 2013 POP3 log file. Notice the lines with a '#' in front of them:

Chapter 10: IMAP and POP 276

7| POP32019090100-1.L0G - Notepad

File Edit Format View Help
dateTime,sessionld,seghumber,slp,clp,user,duration,rqsize,rpsize,command,parameters,context,puid
tware: Microsoft Exchange Server
#/grsion: 15.8.8.8
#ldz-type: POP3 Log

dre: 2819-989-81T68:41:080.7307
#F¥=1ds: dateTime,sessionId,segllumber,sIp,cIp,user,duration,rqsize,rpsize,command,parameters,context,puid
2019-89-01T98:41: BB 7307 ,6000000000000001,0,192.168.6.163:118,192.168.08.28:58798, ,427,08,51,0penSession, ,,
2019-89- BlTBB.Al.BE.SB?Z,BBBBBBBBBBBBBBBI,1,192.168.B.163.118,192.168.@.28.58793,,258,11,42,user,damlan,”R—“”-
20159-89-01T00:41:08.5457 ,0000000000000001,2,192.168.0.163:1108,192.168.0.28:508798, ,78,11,25,InvalidCommand , USER]
2019-89-01T88:41:089.86847 , A0AG00060A0AE001,3,192.168.0.163:1168,192.168.8.28:508798, ,48,4,61,quit, ,R=0K,

Note: How variables store data:

B Pop320160124-1.L0G - Notepad
File Edt Format Wiew Help

IdateTime.sessionid.seanumber .sIo.cIp.user.duration.rasiz

Sline.dateTime sline.seqNumber | sline.clp | $line.duration

sline.sessionid sline.slp sline.user

If the line in the CSV file does not have a '# in front of it, we can process it. To do so we can use an 'Else {' code section. This
new section of code will work with lines with no '#' in front of it.

Else {

Here we are isolating the CIP (Client IP) value. The $info variable will store the CIP value in the current line of the current log
file:

$Info = $Line.Cip

Part of troubleshooting the script is to remove bugs or workaround that data that is ingested into variables. In this case,
$Info has a value of CIP for the first line. This line effectively says if $info does not have a value of ‘cip' then do these steps.

If ($Info -ne "Cip") {

This line will loop through all the values in the $info variable. Without this step, we would receive an error about indexing a
null array as well a perform a certain operation on the data.

Foreach ($Value in $Info) {

While working on this section of code, an error was generated in testing:

Chapter 10: IMAP and POP 277

PowerShell ran into an issue and the solution is to loop through the variable as it is an array of values. The ‘Cannot index
into a null array' is the clue. The fact that the variable is an array provides an opportunity to work with the data better in a
loop. The Foreach loop will allow PowerShell to go through each line and process it correctly.

This line will allow us to split the $value variable into chunks, using the "' character as the splitting point. 0x003A stands for
the "' character.

$ID = $Vvalue.Split([Char]@xee3A)

Data in the $Value variable prior to splitting:

Data as stored Data the way we need it

Column divider

Column 'Q’ Column'1'

.45:63475 172.168 .0
.48:63475
.47:63475
.4%:63475
.43:63475
.43:63475
.43:63475 . B
.43:63475 172 .168.4H

$ID[0] is the first value stored in the $ID array. ($ID[1] would be the port number, which is column 1 above):
$CIP = $ID[0]

This data looks like this:

172.168.8.45
192.168.08.48
192.168.8.47
192.168.8.47

172.168.8.43
172.168.8.43
172.168.8.43
172.168.8.43

Chapter 10: IMAP and POP 278

Here we are combining all of the values found in $Cip and storing them in an array called $CipResults:

$CipResults += $Cip

Because we are storing variables in the $CipResults variable, we also need to define the variable as an array. It is not
uncommon to have to define this after a script is almost complete especially if the data type to be stored in a variable are
not known. The best practice is to place these lines at the top of the script:

$CipResults = @()

After the script reads all the POP3 log files and stores the information in a variable (this part could take time depending on
the number of log files and size of the files that were are searching through). PowerShell can now display a list of the CIP
values:

$CipResults | Sort -Unique

This line will take the values in $CipResults, find all unique values and sort them. If for example, if the data set looked like
this:

192.168.0.43,192.168.0.43,192.168.0.43,192.168.0.45,192.168.0.46,192.168.0.46,192.168.0.43
,192.168.0.47

You would see this displayed at the end:
192.168.0.43 192.168.0.45 192.168.0.46 192.168.0.47

Final Script
Define Variables
$CipResults = @()
Get Files for parsing
$Location = (Get-PopSettings).LogfilelLocation
$Files = Get-ChildItem $Location
Loop for each file to get IP Addresses
Foreach ($File in $Files) {
$Name = $File.Name
$Csv= Import-Csv (Join-Path $location $name)
Foreach ($Line in $Csv) {
If ($Line -Like "#") { }
Else {
Get the Client IP
$Info = $Line.Cip
If ($Info -ne "Cip") {
Foreach ($Value in $Info) {
Client IP also contains the port number which we will remove here
$ID = $Value.Split([Char]@xee3A)
$CIP = $ID[0]
$Cipresults += $cip
}

}

}

}

}

Optional - Remove Duplicates

Write-host "List of IP Addresses that connect to the POP3 Service of all the Exchange 2013
Servers." $cipResults | Sort -Unique

Chapter 10: IMAP and POP 279
Results produced by the script:

List of IPF Addresses that connect to the POP3 Service of all the Exchange 2813 Servers
172.168.8.43
122.168.8._45

192.168.08.47
192.168.8.48
192.168.8.49

Limitations and How to Overcome Them

The PowerShell script used for determining POP3 Connections is written to query one local server. What if the Exchange
organization contains a large number of servers? In a large migration, that could be a problem. Do we want to run the script
separately on each server? Or do we want to use PowerShell to handle multiple queries?

How do we overcome this problem?

First, since this scenario is built off Exchange 2013 (in a migration to Exchange 2019), we'll assume we need to check each
Exchange 2013 server for the same information. A common solution when dealing with a large number of servers is running
a loop with the code run against each server. There are exceptions, but in general expanding the same code to be run
against multiple objects is one of the main advantages of PowerShell. First, a list of Exchange Servers is needed in order to
know what servers are being queried in the script:

Get-ExchangeServer

Hame i ServerRole Edition AdminDisplavlersion

Ex-26813
E&-20013 -2 LAB2.LOCAL-Confi... Mailbox.... Standard... Uersion 15.8 <{Bu...
EX-2019 LAB2.LOCAL/Confi... Mailbox.... Standard... Uersion 15.2 (Bu...

Unfortunately, we get all Exchange Servers even the Exchange Server 2019 servers. We need to filter those servers out and
leave only 2013 servers behind. Exchange 2013 Servers have the value of "Version 15.0 (Bu...)" for the AdminDisplayVersion
property (last column in the above screenshot). To get just those Exchange 2013 servers the Get-ExchangeServer cmdlet, is
used and a filter is employed to get the results for that property, with that value:

Get-ExchangeServer | Where {$_.AdminDisplayVersion -Like "Version 15.0%*"}

Mame i ServerBole Edition AdminDiszsplaylersion

Ed-2813
Ei-2813-2 LABZ2.LOCALAConfi... Mailbox.... Standard... Uersion 15.8 <Bu...

Now that the list contains just Exchange 2013 servers the 'Name' property is all we need. Refining the results again, we place
brackets '(')" around the previous one-liner which allow us to pick a property from the servers, in this case 'name"

(Get-ExchangeServer | Where {$_.AdminDisplayVersion -Like "Version 15.0*"}).Name
Next will be to store the server names in a variable called '$Servers":

$Servers = (Get-ExchangeServer | Where {$_.AdminDisplayVersion -Like "Version 15.0*"}).Name

Then a loop is necessary to process a series of PowerShell cmdlets for each Exchange 2013 server name stored in $Server.
The loop will read in the $servers variable and store the current line of values in a variable called $Server (notice the singular
vs plural). Inside the loop there will be code for the POP3 log analysis.

Chapter 10: IMAP and POP 280

Foreach ($Server in $Servers) { .. insert code here .. }
The next step is to integrate the $Server variable into the script so that each time the Foreach loop reads another name, the
correct settings can be read for the server. Not only do we need to do that, but the file name path will need to be adjusted

to a UNC path in order to be read properly:

Note: new multi-server script shown below:

NEW CODE

scipresults — @) Retrieve the names of all servers of a certain version

Get all Exchange 2013 servers)
SExchangeServers = (Get-ExchangeServer | where {$_.AdminDisplayversion -like 'Version 15.0%'}).Name

]
|

=Foreach (ﬁExchangeServer‘fn $ExchangeServers) {
~——

Get files for parsing e

ExchangeServer) .LogFilelLocation

tion = (Get-Popsetings-Server |SExc
pathl= "\\Server\%(SlLocation.Replace Yy
F1les g

= Get-Childitem SpPat
NEW CODE
Change $Path to a UNC path

= Foreach (§File in SFiles) {
fName = SFile.Name
§CSV = Import-cSY[$Path]'\"$Name

E Foreach (3Line in $Cs5Vv) {

E it (SLine -NotLike "#*#*") {

Get the Client IP

§CIPTovalidate = SLine.CIP
E If ($CIPTovalidate -ne 'cip') {
E Foreach ($value in $CIPTovalidate) {
= If ($value -ne $Null) {

#Cliewnt IP also contains port number
$ID = $value.split([char]ox003a)

$CIP = $ID[O]

§CIPResults +- $CIP

The results will work the same as the single server script in that multiple servers can now be queried.

Last limitation is there is the ‘X' Factor that we do not know how many or how large the POP3 log files would be. For a typical
migration, the last 30 days for connection detection should be sufficient. In this case we would only review logs that are <=
30 days old. To handle this, we would set a time limit using the Get-Date cmdlet and subtracting 30 days from the current
date. We reuse the $path variable which refers to the file location on a remote server.

$Limit = (Get-Date).AddDays(-30)
Get-ChildItem $Path -Recurse | ? { -Not $.PSIsContainer -And $.CreationTime -1t $limit} |
Remove-Item

Chapter 10: IMAP and POP 281

Conclusion for this Script

While the above script was written for Exchange Server 2013, it was written for a migration to Exchange Server 2019. The
same code in the final script works on Exchange 2013, 2016 and 2019. This was verified in multiple test labs prior to putting
this code in our book.

Summary of cmdlets used:

Get-ExchangeServer
Get-POPSettings
Get-ChildItem
Import-Csv
Write-Host

IMAP4

We've covered POP3, but now IMAP4 deserves attention as we are more likely to find clients connecting with IMAP4 versus
POP3. In the POP3 section we were able to track down the logs and write a script to find any client connections using that
protocol. Let's see what it takes to accomplish the same task with IMAP4. We will skip some of the above steps as we've
‘worked out the kinks' in the way the script needs to run.

IMAP is a more modern protocol and tends to be the protocol used by mail servers that are not Exchange Servers. IMAP
also operates in a different manner than the previous POP3 protocol. It does not download email from the mail server and
delete it from the server. This allows for multiple clients (think multiple computers and mobile devices) to connect to the
same email account and not have to worry about mail being missing. In our BYOD and multiple device age, the IMAP4
protocol provides a superior end user experience to POP3.

IMAP uses ports 143 (insecure, unencrypted or opportunistic TLS) and 993 (secure and encrypted). Commonly an ISP’s (like
Google) uses IMAP, as do many mail servers that run on Mac servers, Exchange server and Office 365 can enable it as well.

Similar to POP3, most engineers deal with IMAP4 for initial setup, troubleshooting and migrations. Like POP3, we will start
with discovering IMAP4 connections.

Script Re-Usability
IMAP is similar enough in Exchange that the script used for POP3 can be re-used to handle IMAP4 logs on the same
Exchange servers. After reviewing the code for the script, the only lines that needed to be changes were:

$Location (Get-POPSettings -Server $Server).LogFilelLocation

Which becomes:
$Location = (Get-IMAPSettings -Server $Server).LogFilelLocation
And then the description line at the bottom of the script:

Write-Host "List of IP Addresses that connect to the POP3 Service of all the Exchange 2013
Servers."

Which becomes:

Write-Host "List of IP Addresses that connect to the IMAP4 Service of all the Exchange 2013
Servers."

Chapter 10: IMAP and POP 282

Really, that was it. The rest of the lines in the script dealt with querying server names, parsing log files and summarizing
results. The similarities were key in the area of log files that POP3 and IMAP4 use. This very little effort was needed to create
two completed scripts, which report on two different protocol connections for Exchange Servers.

IMAP4 Script Code
Define Variables
$CipResults = @()
$Location = (Get-IMAPSettings).LogFilelLocation
$Files = Get-ChildItem $Location
Loop for each file to get IP Addresses
Foreach ($File in $Files) {
$Name = $File.Name
$Csv = Import-Csv $Location"\"$Name
Foreach ($Line in $Csv) {
If ($Line -NotLike "*#*") {
Get the Client IP
$CIPToValidate = $Line.Cip
If ($CIPToValidate -ne "cip") {
Foreach ($Value in $CIPToValidate) {
Client IP also contains the port number which we will remove here
$ID = $Value.Split([Char]ox003A)
$CIP = $ID[0]
$CipResults += $Cip
}

}

}

}

}

Optional - Remove Duplicates

Write-Host "List of IP Addresses that connect to the IMAP4 Service of all the Exchange 2013
Servers."

$CipResults | Sort -Unique

Results for the IMAP version of the script:

List of IP Addresses that connect to the IMAP4 Service of all the Exchange 2813 Servers.

18.8.3.5
18.5.6.7

POP3 and IMAP4 Reporting

While finding the connections made by clients or servers to Exchange Servers can be useful for long term maintenance or
documenting settings for these services. The documentation can be as simple as a formatted list report created in PowerShell
as complex as a complete export of settings with these settings extracted and then reformatted into an HTML report for
server documentation purposes.

POP3 Setting

Going back to the beginning of this chapter we know we can run these commands to begin our analysis:

Get-Service *Pop*
Get-POPSettings

Chapter 10: IMAP and POP 283

The Get-Service command is good, but it is not nearly detailed enough for providing information. Using WMI or CIM queries
are a better bet as more information is stored:

Get-WmiObject Win32_Service -Property * | Where {$_.Name -Like "*pop*"} | Select *

Note: Notice the use of the 'Win32_Service’ class in the above command. To find the appropriate class see the WMI/CIM

chapter.
PSComputeriame
Name

Status

X ode
DesktopInteract
ErrorControl
PathName

serviceTyp
startMode
_GENUS
__CLASS
__SUPERCLASS
_ DYNASTY
__RELPATH
__PROPERTY_COUNT
__ DERIVATION
__SERVER
NAMESPACE

onClasshame
DelayedAutoStart
Description

DisplayName
InstallDate

ProcessId
ServiceSpecificExitCode
Started

Startiame

State
SystemCreationClasshame
SystemName

TagId

WaitHint

Scope

Path

Options

: Provides Post

: 19-83-EXe1

: 19-83-EXe1

: MSExchangePop3
: 0K

: @

False

: Normal

"C:\Program Files\Microsoft\Exchange
Server\V15\FrontEnd\PopImap\Microsoft.Exchange.Pop3Service.exe"

: Own Process
: Manual

xchangePop3"

Win32_BaseService, CIM_Service, CIM LogicalElement, CIM ManagedSystemElement}

B83-EX81\root
False

: True

: Microsoft Exc
: 8

: Win32_Service

False
ce Protocol version 3 service to clients. If this service is stopped,
clients can't connect to this computer using the POP3 protocol.

: Microsoft Exchange POP3

True
LocalSystem

: Running

lin32_ComputerSystem

While the amount of information may seem overwhelming, the Get-WmiObject command enables us to pick the needed
details. Take some time to review each line as this information may come handy with future queries. The service account, if
there is a service account, is shown as “StartName” and the path to the executable that is linked to the service on the server
is listed as "PathName".

Get-WmiObject Win32_Service -Property * | Where {$_.Name -Like "*pop*"} | Select Caption,
SystemName, StartMode, State, StartName, PathName | fl

This cmdlet reveals some key information about the POP3 services on an Exchange 2019 server:

Caption
SystemName : 19-83-EX81
StartMode : Manual
State : Running
StartName LocalSystem
PathName

Caption
SystemName : 19-83-EX81
StartMode : Manual
State : Running
Startiame
PathName

Chapter 10: IMAP and POP 284

: Microsoft Exchange POP3

"C:\Program Files\Microsoft\Exchange Server\V15\FrontEnd\PopImap\Microsoft.Exchange.Pop3Service.exe"”

: Microsoft Exchange POP3 Backend

: NT AUTHORITY\NetworkService
"C:\Program Files\Microsoft\Exchange Server\V15\ClientAccess\PopImap\Microsoft.Exchange.Pop3Service.exe”

Next the ‘Get-PopSettings | fl' one-liner will provide the remaining information on POP3 for the Exchange server:

Name

ProtocolName
MaxCommandSize
MessageRetrievalSortOrder
UnencryptedOrTLSBindings
SSLBindings
InternalConnectionSettings
ExternalConnectionSettings
xX5@9CertificateName

Banner

LoginType
AuthenticatedConnectionTimeout
PrefuthenticatedConnectionTimeout
MaxConnections
MaxConnectionFromSingleIP
MaxConnectionsPerUser
MessageRetrievalMimeFormat
ProxyTargetPort
CalendarItemRetrievalOption
OwaServerUrl
EnableExactRFC8225ize
LiveIdBasicAuthReplacement
SuppressReadReceipt
ProtocollogEnabled
EnforceCertificateErrors
LogFilelocation
LogFileRollOverSettings
LogPerfileSizeQuota
ExtendedProtectionPolicy
EnableGSSAPTANdNTLMAuth
Server

AdminDisplayName
ExchangeVersion
DistinguishedName

Identity

: Ascending

: {[::]:118, 6.9.0.6:116}

: {[::]:995, 8.8.8.8:935}

: {19-83-EX61.19-63.Local :995:55L,
P AT

: 19-83-EX81

: The Microsoft Exchange POP3 service is ready.
: Securelogin

: BB:368:88

: BB:B1:88

1 2147483647

1 2147483647

! 16

: BestBodyFormat

11985

: iCalendar

19-83-EX81.19-83.Local:118:TLS}

False
False

: False

: True

: False

: C:\Program Files\Microsoft\Exchange Server\V15\Logging\Pop>
: Hourly

: @ B (8 bytes)

: None

: True

! 19-83-EX8l

: 9.18 (14.8.108.8)

: CN=1,CN=POP3,CN=Protocols,CN=19-83-EX81,CN=Servers,CN=Exchange Administrative
Group (FYDIBOHF23SPDLT),CN=Administrative Groups,CN=First
Organization,CN=Microsoft Exchange,CN=Services,CN=Configuration,DC=19-83,DC=Local
¢ 19-83-EXe1\1

Depending on what the POP3 server is used for or what clients are connecting, settings can be chosen for documentation
purposes. Here is a sample of the above services:

Get-POPSettings | F1 Server,ProtocolName,X509%, Login*,LogFilelL*,Unen,SSL*,*authe*

Server

ProtocolName
X5eoCertificateName
LoginType
LogFilelocation
SSLBindings

AuthenticatedConnectionTimeout
PrefuthenticatedConnectionTimecut

19-83-EX01

POP3

19-83-EX81

Securelogin

C:\Program Files\Microsoft\Exchange Server\Vi5\Logging\Pop3
{[::]:995, ©.8.8.8:995}

66:36:068

g6:081:68

Chapter 10: IMAP and POP 285

If there are multiple Exchange 2019 servers present, the above one-liner's won't be as useful because the commands only
run locally and not globally against a larger environment. That is, unless these commands are modified to handle more than
one server. Several available options present themselves in order to solve this conundrum.

(1) Loop

$Servers = Get-ExchangeServer

Foreach ($Server in $Servers) {

Get-PopSettings -Server $Server | fl Server, ProtocolName,x509%,logint*, logfilel*, unen*,
SSL*, *authe*

}

(2) One liner

Get-ExchangeServer | Get-PopSettings | fl Server, ProtocolName, x509*, logint*, logfilel*,
unen*, SSL*, *authe*

Both of these methods create the same results in the end:

Server : 19-83-EX81
ProtocolName : POP3
rtificatelame 1 19-83-EX61
LoginType 5 relLogin
LogFilelocation : C:\Program Files\Microsoft\Exchange Server\V15\Logging\Pop3
UnencryptedOrTLSBindings v4[::]:110, 9.9.0.0:110}

SSLBindings e B , ©.98.8.8:095}

AuthenticatedConnectionTimeout

PreAuthenticatedConnectionTimeout

Server :

Protocollame : POP3

X589CertificateName : 19-B3-EXG2

LoginType : reLogin

LogFilelocation : C:\Program Files\Microsoft\Exchange Server\V15\Logging\Pop3
UnencryptedOrTLSBindings : {[::]:118, ©.8.8.8:118}

SSLBindings : {[::]:995, ©.8.8.8:995}

AuthenticatedConnectionTimeout

PrefwthenticatedConnectionTimeout

If a POP3 connection is failing, use this command to review the LoginType and X509 certificate, as well as the Unencrypted
and SSL bindings. If your POP3 application does not support a secure login, we need to change the options with ‘Set-
POPSettings’ (see the next page for examples):

Before:

XoeoCertificateName

Run this command to change the LoginType (to handle the different connection type):

Set-PopSettings -LoginType PlaintextLogin

After:

LoginType UnencryptedOrTLSBindings SSLBindings X5@9CertificateName

Chapter 10: IMAP and POP 286

Remember to utilize Get-Help <command name> -Full in order to get information on what options are available for a
particular PowerShell cmdlet. For converting single server queries to multiple server queries:

Replace the server name "ex01" with $server, this loop will use the
/7 server name stored in $server instead when getting POP settings.
7
#

=%

- | |r1} 2 - E | C & = £k X
Get-POPSettings :’ ex01"§| f1 server, protocolname,x.509% logint*, Togfilel*, unen*, K SSL*, *authe*
] g =

3 ol

$servers (Get-ExchangeServer) . name

. .] Code shell that can be used for
Btoreach ($server 1n $servers i i
= EWE), 1 single or multiple server

querying PowerShell cmdlets.

Afterchanging the server name to the variable and inserting code into the Foreach loop, the resulting code looks like this:

$servers (Get-ExchangeServer) . name

foreach ($server in Sservers) {
Get-POPSettings $server | 1 server,protocolname,x.509% logint®, logfilel®, unen®* SSL*, *authe*
h
IMAPA4 Setting

IMAP4 in Exchange Server 2019 contains a similar set of cmdlets and configuration data to POP3. As such, we can use very
similar cmdlets to work on the IMAP4 like POP3.

Get-Service *IMAP*
Get-IMAPSettings

We know from the POP3 section that the Get-Service command is good, but it is not nearly detailed enough for providing
information. Using WMI or CIM queries are a better bet as more information is provided when compared to the *-Service
cmdlets, such as checking the startup mode of services (StartMode):

Get-WmiObject Win32_Service -Property * | Where {$_.Name -Like "*imap*"} | Select *

PSComputeriame
Name

Status

ExitCode
DesktopInteract
ErrorControl
PathName

ServiceType
StartMode
__GENUS
__CLAsS

_ SUPERCLASS
_ DYNASTY

__ RELPATH
__PROPERTY_COUNT
_ DERIVATION
__ SERVER

_ NAMESPACE
__PATH
AcceptPause

Chapter 10: IMAP and POP

19-83-EX\B1

MSExchangeImap4

OK

1677

False

Mormal

"C:\Frogram Files\Microsoft\Exchange
Server\W1s\FrontEnd\PopImap\Microsoft.Exchange.Imap4Service.exe"
Own Frocess

Manual

2

Win32_ Service

Win32 BaseService

CIM ManagedSystemElement
Win32_Service.MName="MSExchangeImap4"”

26

{Win32 BaseService, CIM Service, CIM LogicalElement, CIM ManagedSystemElement}
19-83-EXe1

roothcimv2
\\19-83-EX@1\root\cimv2:Win32_Service.Name="MSExchangeImap4"
False

AcceptStop
Caption
CheckPoint
CreationClasshName
DelayedAutoStart
Description

DisplayMame

InstallDate

ProcessId
ServiceSpecificExitCode
Started

Startiame

State
SystemCreationClasshame

False

Microsoft Exchange IMAP4

]

Win32 Service

False

Provides Internet Message Access Protocol service to clients. If this service is stopped,
clients won't be able to connect to this computer using the IMAP4 prctocol.

Microsoft Exchange IMAP4

e

a

False

LocalSystem

Stopped
Win32_ComputerSystem

Just like POP3, we can use the Get-WmiObject command to help pick the needed details. The service account, if there is a
service account, is shown as “StartName” and the path to the executable that is linked to the service on the server is listed

as "PathName”.

Get-WmiObject Win32_Service -Property * | Where {$_.Name -Like "*imap*"} | Select Caption,
SystemName, StartMode, State, StartName, PathName | fl

This cdlet reveals some key information about the IMAP4 services on an Exchange 2019 server:

Caption
SystemName : 19-83-EX81
StartMode : Manual
State : Stopped
Starthame
PathName

Caption
Systemiame : 19-83-EX81
StartMode : Manual
State : Stopped
Startiame
PathName

LocalSystem
"C:\Program Files\Microsoft\Exchange Server\V15\FrontEnd\PopImap\Microsott.Exchange.Imap45Service.exe"

! Microsoft Exchange IMAP4

: Microsoft Exchange IMAP4 Backend

: NT AUTHORITY\NetworkService
"C:\Program Files\Microsoft\Exchange Server\V15\ClientAccess\PopImap\Microsoft.Exchange.Imap4Service.exe"

Next the ‘Get-IMAPSettings | fI' cmdlet provides the remaining information on IMAP4 for the Exchange Server:

ProtocolName

MName

MaxCommandSize
ShowHiddenFoldersEnabled
UnencryptedOrTLSBindings
SSLBindings
InternalConnectionSettings
ExternalConnectionSettings
X5@9CertificateName

Banner

LoginType
AuthenticatedConnectionTimeout
PrefuthenticatedConnectionTimeout
MaxConnections
MaxConnectionFromSingleIP
MaxConnectionsPerUser
MessageRetrievalMimeFormat
ProxyTargetPort
CalendarItemRetrievalOption
OwaServerurl
EnableExactRFC8225ize
LiveIdBasicAuthReplacement
SuppressReadReceipt
ProtocollLogEnabled
EnforceCertificateErrors

Chapter 10: IMAP and POP

IMAP4
1

16248
False

f[::]1:143, ©.96.8.09:143}

f[::]:993, ©.6.8.8:993}
{19-83-EX@1.19-83.Local:993:55L, 19-83-EX@1.19-83.Local:143:TLS}
ir

19-83-EX81

The Microsoft Exchange IMAP4 service is ready.
Securelogin

B8 :36:88

Be:01:80

2147483647

2147483647

16

BestBodyFormat

1993

iCalendar

False
False
False
False
False

LogFilelocation
LogFileRollOverSettings
LogPerFileSizeQuota
ExtendedProtectionPolicy
EnableGSSAPIAnNdNTLMAuth
Server

AdminDisplayMame
ExchangeVersion
DistinguishednName

Identity

Guid
ObjectCategory
ObjectClass

: C:\Program Files\Microsoft\Exchange Server\V15\lLogging\Imap4
: Hourly

: BB (8 bytes)

: None

: True

19-83-EX81

: B.18 (14.6.1006.8)
: CN=1,CN=IMAP4,CN=Protocols,CN=19-83-EX@1,CN=Servers,CN=Exchange Administrative

Group (FYDIBOHF23SPDLT),CN=Administrative Groups,CN=First
Organization,CN=Microsoft Exchange,CN=Services,CN=Configuration,DC=19-83,DC=Local
19-83-EX81\1

3Bed88T6-68Tc-42F6-b3c7-18cbb35ab63f
19-83.Local/Configuration/5Schema/ms-Exch-Protocol-Cfg-IMAP-Server

{top, protocolCfg, protocolCfgIMAP, protocolCfgIMAPServer}

Depending on what the IMAP4 server is used for or what clients are connecting, settings can be chosen for documentation

purposes:

Get-IMAPSettings -Server $Server| fl Server,ProtocolName,x509%*,Logint*,Logfilel*,

Unen*,SSL*, *Authe*

Server

Protocollame
X5@9Certificatelame
LoginType
LogFilelocation
UnencryptedOrTLSBindings
SSLBindings

AuthenticatedConnectionTimeout
PrefuthenticatedConnectionTimeout

19-83-EXB1
IMAP4
19-83-EXB1
Securelogin
C:\Program
{[::]1:143, 6.8.8.8:143}
{[::]:993, B.8.8.8:993}
00:30:80

e aa

Files\Microsoft\Exchange Server\V15\lLogging\Imap4

a1 :

Just like we did with POP3, if there are multiple Exchange 2019 servers present, the above one-liner's won't be as useful
because the commands only run locally and not globally against a larger environment. That is, unless these commands are
modified to handle more than one server. Several available options present themselves in order to solve this conundrum.

(1) Loop
$Servers =

Get-ExchangeServer

Foreach ($Server in $Servers) {

Chapter 10: IMAP and POP 289

Get-IMAPSettings -Server $Server | fl Server, ProtocolName, x509*, Logint*, Logfilel*,
Unen*, SSL*, *Authe*

}

(2) One liner
Get-ExchangeServer | Get-IMAPSettings | f1 Server, ProtocolName, X509*, Logint*, Logfilel*,
Unen*,SL*, *Authe*

Both of these methods create the same results in the end:

19-83-EXBl
IMAPA
19-83-EX81
ype : urelogin
elocation x Program Files\Micr
ptedOrTLSBindings :] , ©.9.9.8:143
tedConnectionTimeout

catedConnectionTimeout

9Certificatelame

Y
gFilelocation : Pr £\ hange Server\Vi15\lLogging\Imap4
yptedOrTLSBindings : H 3, ©.0.0.0:
it Connectio ¥
PrefuthenticatedConnectionTimeout

If an IMAP4 connection is failing, use this command to review the LoginType and X509 certificate, as well as the Unencrypted
and SSL bindings. If your IMAP4 application does not require a secure login, the options need to change.

Testing POP3 and IMAP Connections

Exchange Server 2019 includes a series of test-xxx cmdlets that enable an Exchange admin to test various parts of Exchange
to make sure they are functional. Utilizing these cmdlets would allow the construction of a server health script. After prepping
the environment for testing, the Test-IMAPConnectivity cmdlet will now generate results. The results would quickly show
what mailboxes have IMAP and which have POP3 enabled. On Exchange 2019 servers, POP3 and IMAP4 are disabled and
the test cmdlets reveal this configuration:

IMAP4
Test-ImapConnectivity -ClientAccessServer:19-03-EX@1 |Ft -Auto

CasServer LocalSite Scenario Result Latenc

'"MSExchangeIMAP4® is

POP3

Result Later

System.TimeoutExceptio
didn't respond within 6@

In a troubleshooting scenario, this cmdlet could verify that a service is up and connections are good. If one user reports an
issue, the command can be tailored to that one user. To do so, specifying credentials will enable the test cmdlet to connect

Chapter 10: IMAP and POP 290

to the POP3 or IMAP4 services with those credentials, effectively impersonating the user (place this at the end of the IMAP4
and POP3 one-liners above):

-MailboxCredential: (Get-Credential 19-©3\administrator)
If this command succeeds and the user still cannot connect, comparing the settings on the application being used to the
service settings is key. Specifically looking at the LoginType. Some applications will not handle ‘SecureOnly’ (the encrypted
version of POP3 or IMAP4) well at all.
Note: If while running test cmdlets, this error occurs:

[PS] »Test-ImapConnectivity -Clienta | Ft

WARNING: Test user 'extest d3f17a9f24b84' isn , 50 this cmdlet won't be able to test Client Access server
connectivity.

WARMING: No Client Access servers were tested.

This means we need to create a test account, as the error message states, using the new-TestCasConnectivityUser.ps1 script:

\new-TestCasConned tyUser.psl
poses, the password will be changed re

lick Enter to
al : extest 24b84 3. Lo
Please update UseDatabaseQuotaDefaults to false in order for mailbox quotas to apply.
WARMING: The command completed successfully but no settings of "19-83.Local/Users/extest d3f17a9f24b84° have been
modified.

You can enable the test user for Uni e ing by r ing i ommand with the following ars @ [-UM
DialPlan 1planname> -UMExtension < f n>] . Mone or Both must be

IMAP4 and POP3 - User Settings

One of the often forgotten PowerShell cmdlets is Get-CASMailbox. Seems like an odd cmdlet, but it turns out to be very
convenient. The Get-CASMailbox can be quite useful in providing information on what protocols a user with a mailbox can
use to connect to an Exchange 2019 server - but on a mailbox level and not a server level. In the above screenshot, all
mailboxes are enabled for EAS (ActiveSync), OWA, POP, IMAP and MAPI. If one were to run a simple one-liner like this:

Get-Mailbox | Get-CASMailbox

cEnabled OWAEnabled PopEnabled ImapEnabled MapiEnabled

Administrator True

Damian Scoles True True
Sam Fred True True
Lance Rand True True

Chapter 10: IMAP and POP 291

Wait. What? Get-CASMailbox? CAS did stand for Client Access Server, a role that existed in Exchange Server 2013? However,
this command is used for some special operations on mailboxes in Exchange Server. In some sense it is a holdover purely
based on its name. The command is useful for managing mailboxes in Exchange 2019. Get-CASMailbox can also reveal
other properties of a mailbox like:

OWAMailboxPolicy OWAforDevicesEnabled ECPEnabled
MapiHttpEnabled UniversalOutlookEnabled EwsEnabled
EwsAllowOutlook EwsAllowMacOutlook EwsAllowEntourage
EwsApplicationAccessPolicyEwsAllowList EwsBlockList

ShowGalAsDefaultView .. and more ..

How can these properties be utilized? Let's take a scenario where a company has put in place a policy that restricts the use
of certain protocols with their new Exchange 2019 servers. IT wants to restrict POP3 and IMAP access. There is a small subset
of users that require the use of these protocols and IT wants to limit IMAP and POP protocols. Lastly, we need to accomplish
these goals with PowerShell, and it needs to be scalable.

Where To Start

Each protocol will have two groups of users —those that have access and those that do not. The first step would be to group
users that should have access as this group will be the easiest to build and maintain rather than trying to maintain a group
of those to block access to a resource. In Active Directory, create a group called “POP3 Access” and another call “IMAP
Access”. We then add users who will have access to these resources like so: (using Active Directory Users and Computers).

==

File Action View Help

@fﬂf@“‘,@lﬁ"ﬂ x|_,_u_|ﬁifu. LaETEYR

. Type Description
| Saved Cueries Security Group

v :—Fq 18-03.Local :
5 Security Group...

Builtin

2| Domain Control

“| ForeignSecurityP| General Members Member Of
_| Managed Service

2| Microsoft BExchan
| Users Mame Activeg

Members:

2| Security Groups

| Ohject Types...

| Locations...

Check Mames

Advanced... Cancel

Chapter 10: IMAP and POP 292

Now that the groups are populated with users a script will be needed to enforce these access conditions. What is needed in
order to build the script?

1. Need to store this user list in a variable to determine access or use the group name in the script as the determining
factor for access in the script.

What access should be granted or denied depending on members?

What commands we can use to query this information in Exchange?

What commands we can use to add or remove access to the resource?

How often do we would want to reinforce this action?

vk wn

PowerShell Cmdlet Determination
Storing the names of users who need access or using the group name?

Using a group name is far easier than storing the list of names. The reason to do this is if PowerShell were to cycle through
each mailbox to determine access, it would be easier to see if they are a member of a group (single comparison) versus
comparing a list of uses (multiple comparisons). The single comparison method is much faster. Storing the group name in
a variable is step one in the script build:

$POP3AccessGroup = “POP3 Access™

What access should be granted or denied depending on group membership?

In this case, the requirement was to allow certain user’s access to POP3 and block all other users from using POP3. Going
back to the Get-CASMailbox cmdlet, 'OWA Enabled’ is an option that can be configured on a mailbox. Get CASMailbox has
a set-command for changing settings — Set-CASMailbox. Not knowing what options can be configured, we can try two
options. One is to run this:

Get-Help Set-CASMailbox -Parameter *
Or we can type in the below syntax and then hit the Ctrl and Spacebar at the same time to reveal all parameters:
Showllindow ionActi OutBuffer

Verbose rrory b PipelineVariable
Component Examples Debug

Functionality Parameter
Role Online ti OutVariable

Looking closely at the options we see IMAPEnabled and POPEnabled. Both have two settings - $True and $False. We can set
these values for each mailbox on the Exchange 2019 Servers.

With the base command figured out, the next step is to use these cmdlets to set the access for all mailboxes or for some
mailboxes based off of group membership. How can group membership be verified?

What commands we can use to query this information in Exchange?
First, get a list of groups a user is in using the ‘'memberof ' property:

$MemberOf = (Get-ADUser -Identity (Get-Mailbox Administrator).Alias -Properties
Memberof) .Memberof

Chapter 10: IMAP and POP 293

What commands can we use to add or remove access to the resource?
As discussed above, one PowerShell cmdlet and two parameters will allow for the changing of access to IMAP or POP:

Set-CasMailbox -IMAPEnabled $True
Set-CasMailbox -POPEnabled $True

$False would be used to disable access to those not in the AD Group.

Putting it together
Then, using the names of the groups stored in $MemberOf, check for any groups that match our POP3 Access groups and
then set POP3access:

If ($MemberOf -Like "*POP3 Access*") { Set-CasMailbox $Alias -POPEnabled $True}

Putting these pieces together, we can create a script like this: (note we are excluding the Discovery mailbox as well)

$Mailboxes = Get-Mailbox | where {$.Name -NotlLike "DiscoverySearchMailbox*"}
Foreach ($Mailbox in $Mailboxes) {

Get all groups a user is a 'member of'

$MemberOf = (Get-ADUser -Identity (Get-Mailbox $Mailbox).Alias -Properties
Member0Of) .Memberof

If the user is in the POP Access group enable access and if not ('Else'), disable access
If ($MemberOf -Like "*POP3 Access*") {

Set-CasMailbox $Mailbox -POPEnabled $True

} Else {

Set-CasMailbox $Mailbox -POPEnabled $False

}

}

Note: That we are excluding the Discovery mailbox as well and the POP3 Access lines can be compressed into one line
where the $True or $False value from $MemberOf could be applied to the PopEnabled value for the mailbox:

Set-CasMailbox $mailbox -POPEnabled ($MemberOf -like "*POP3 Access*")

Prior to running the above script, validate who has the setting enabled or disabled: (note what mailboxes are disabled)

Name

Administrator

Damian Scoles
Sam Fred
Lance Rand

The POP Access group has these members:

POP3 Access Properties ? =

General Members Member Of Managed By

Members:

MName Active Directony Domain Services Folder

2 [:
L ance Rand 19-03.Local/Users

Chapter 10: IMAP and POP 294

After the script is run, ONLY Damian and Lance would get POP3 access, all others remain disabled ($False).

Mame Activ A i ! I MapiEnabled

Administrator

Damian Scoles True] I T | True True
Sam Fred True True |False | True True

Lance Rand True True | Tru | True

As expected, the results produced are what IT had given as a task. Now, to do the same for IMAP, the script has a couple of
lines changes:

$Mailboxes = Get-Mailbox | Where {$.Name -NotlLike "DiscoverySearchMailbox*"}

Foreach ($Mailbox in $Mailboxes) {

Get all groups a user is a 'member of'

$MemberOf = (Get-ADUser -Identity (Get-Mailbox $Mailbox).Alias -Properties

MemberoOf) .Memberof

If the user is in the IMAP Access group enable access and if not ('Else'), disable access
If ($MemberOf -like "*IMAP Access*") {

Set-CasMailbox $Mailbox -IMAPEnabled $True

} Else {

Set-CasMailbox $Mailbox -IMAPEnabled $False

}
}

Before the script:

‘E‘

Mame

SyncEnabled OWAEnabled PopEnabled |ImapEnabled| MapiEnabled

Administrato
Damian Scol
Sam Fred

Lance Rand

=3
=
m

n
es

= |
=

m
m m m m
—_] = =
|
=
m m m m

o e [R |
= | |
= =
m

=)
=

After the script:

MName ActiveSyncEnabled OWAEnabled PopEnable . apEﬂabie.' apiEnabled

Administrato

=
m

Damian
Sam Fred
Lance Rand

=} §=
MM

] l] e = [

=
m

How often we would want to reinforce this action?

Once the script is created, we would then need to decide how and when to enforce these settings. Running the script weekly
and daily would be ideal from a restrictive access view. The script can be deployed as a cleanup tool or enforcement tool
using the Windows Scheduler, setting up jobs to handle these changes on a weekly or daily basis.

Chapter 10: IMAP and POP 295

Client Access Rules

Client Access Rules are something new to Exchange Servers. These rules control access to Exchange Services by various
client types. Client Access Rules are like Transport Rules for SMTP mail flow. We can create conditions and actions to affect
access and authentication with Exchange 2019. Online documentation for this cmdlet can be found here:

https://docs.microsoft.com/en-us/powershell/module/exchange/client-access/new-clientaccessrule

PowerShell Cmdlets

Configuring Client Access Rules is only possible in Exchange PowerShell. There is no option or viewable configuration in the
Exhange Admin Center for Exchange 2019. Let's see what PowerShell cmdlets are available for us:

Get-Command *ClientAccessRule
Which reveals these cmdlets for working with Client Access Rules

Get-ClientAccessRule
Remove-ClientAccessRule
Test-ClientAccessRule

New-ClientAccessRule
Set-ClientAccessRule

If we run Get-ClientAccessRule, the first cmdlet we are listed above, in a Greenfield environment we should find no Client
Access Rules configured. This is the default and expected configuration for Exchange 2019. Now, what if we wanted to create
new Rules? What can we do and what is their expected usage?

New-ClientAccessRule
Let's review what we have available in Examples and Parameters for this cmdlet:

Examples:

Example 1

MNew-ClientAccessRule -Name AllocwRemotePs

-Action Allow -AnyOfProtocols RemotePowerShell -Priority 1

Example 2

ssRule -Name "Blc
ClientIPAddress

Mew-Clien

Parameters Available

ipts»New-ClientAccessRule
Scope
Priority
Name
WhatIf
AnyOfProtocols

Confirm
ExceptUsernameMatchesAnyOfPatterns

UserRecipientFilter
ExceptAnyOfClientIPAddressesOrRanges
DomainController
UsernameMatchesAnyOfPatterns

Enabled

AsJob

ErrorAction

InformationVariable

Verbose

WarninghAction
Debug
PipelineVariable
ErrorVariable

Note: Be careful when creating rules that block PowerShell access. If you create a rule that block PowerShell access to where
you cannot connect, you will have to open a support case with Microsoft. The first example use case for the Client Access

Chapter 10: IMAP and POP 296

Rule cmdlet, shows how to avoid this by allowing PowerShell access with a Priority of 1. Subsequent rules will be overridden
by this rule.

Some basics on Client Access Rules and what they can affect:

Exchange Protocols

ExchangeActiveSync ExchangeAdminCenter
ExchangelWebServices IMAP4
OfflineAddressBook OutlookAnywhere
OutlookWebApp POP3
PowerShellWebServices RemotePowerShell
REST

Authentication Types

AdfsAuthentication BasicAuthentication
CertificateBasedAuthentication NonBasicAuthentication
OAuthAuthentication

Client Access Rules can be applied against all allowable protocols and authentication types and can also include exceptions
to these protocols or authentication. In addition to protocols and authentication types, we can also build rules based on IP
Ranges and Username matches.

Before we begin, we should apply the first example Client Access Rule to our environment, to protect ourselves from any
mistakes or typos that may lock us out of PowerShell:

New-ClientAccessRule -Name AllowRemotePS -Action Allow -AnyOfProtocols RemotePowerShell
-Priority 1

[PS] C:\>New-ClientAccessRule -Name AllowRemotePS ti Allow fProt 1= RemotePowerShell

Name Priority Enabled DatacenterAdminsOnly

AllowRemotePS 1 True

Now, let's explore some sample scenarios and what we can do with Client Access Rules.

Example 1

For this example, we need to restrict the use of the Exchange Admin Center (EAC) to only internal connections. The IT
Department has their own subnet for IT computers - 10.0.0.x/24. Further we need to restrict the EAC to only users in IT
Department as well, for further security. For the last option, we can use the 'UserRecipientFilter' parameter.

New-ClientAccessRule -Name 'EAC Restriction' -Action Deny -AnyProtocols ExchangeAdminCenter
-ExceptAnyOfClientIPAddressesOrRanges 10.0.0.0/24 -UserRecipientFilter {Department -ne
"IT'} -Priority 2

Notice that we have the IT IP Range Excluded (ExceptAnyOfClientIPAddressesOrRanges) and excluded the IT Department
from the Deny Access (UserRecipientFilter). Lastly the Rule priority was set to 2, being preceded by the Remote PS rule.

If we check two users to see what their experience is, we can validate whether or not we have the rules correct. A blocked
user will see this:

Chapter 10: IMAP and POP 297

Access to the Exchange admin center has been

blocked by your organization for security reasons.

Click here to sign out

Moare details...

(® Redirect to OWA

Note: When the first Client Access Rules are created, it can take time for them to go into effect. From Microsoft: “To improve
overall performance, Client Access Rules use a cache, which means changes to rules don't immediately take effect. The first
rule that you create in your organization can take up to 24 hours to take effect. After that, modifying, adding, or removing
rules can take up to one hour to take effect."

Source: https://docs.microsoft.com/en-us/exchange/clients/client-access-rules/client-access-rules?view=exchserver-2019

Example 2

For this scenario we want to restrict all protocols to internal company subnets which comes as a directive from the security
department. The only exception to this rule will be for a select group of personnel that have CustomAttribute8 set to
‘MobileAllowed'.

In order to perform these tasks, we will need two separate Client Access Rules. Rules that will be needed:

New-ClientAccessRule -Name 'Corp EWAS Exception' -Action Allow -AnyOfProtocols
ExchangeActiveSync -UsernameMatchesAnyOfPatterns {CustomAttribute8 -eq 'MobileAccess'}
-Priority 2

And

New-ClientAccessRule -Name 'Corp Deny CAR' -Action Deny -AnyOfClientIPAddressesOrRanges
10.0.0.0/16 -AnyOfProtocols ExchangeActiveSync, ExchangeAdminCenter, ExchangeWebServices,
IMAP4, OfflineAddressBook, OutlookAnywhere, OutlookWebApp, POP3, PowerShellWebServices,
RemotePowerShell, REST -UsernameMatchesAnyOfPatterns {CustomAttribute8 -ne 'MobileAccess'}
-Priority 3

The Client Access Rules are in order of smallest match first, which in this case is the CustomAttribute. If a user account does
not match that attribute, they will then process the next rule which will then restrict them to internal use of Exchange 2019.

Client Access Rule Verification
Now that we've create some of the rules above, let's review the properties of the Client Access Rules and what we can see
with PowerShell. If we review the 'EAC Restriction' rule, created in Example 1, we can see the configurable properties:

Chapter 10: IMAP and POP 298

Numbers

=

changeAdminCenter}
1
Department -ne

Scope i Al
AdminDisplayName

It also looks like there are other configurable values, like these:

AnyOfSourceTcpPortNumbers ExceptAnyOfSourceTcpPortNumbers
UserIsMemberOf ExceptUserIsMemberoOf.

However, there are not parameters on the New-ClientAccessRule for this. These parameters might be there for future
changes to the Client Access Rule cmdlets or may be reserved for Microsoft internal use. Either way, we cannot gain any
insight into these values at this time.

